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INTRODUCTION

» A hardware Trojan is a malicious logic inserted into an IP design during its
design or manufacturing process.
» Hardware Trojan are designed to remain undetected until triggered by

specific conditions.



MOTIVATION AND THREAT MODEL

» The goal of this approach is to highlight how a malicious HLS framework
1s capable of inserting hardware Trojans during the Mux-based
interconnect stage of watermarked IP design.

» The impact of a malicious HLS tool may be performance degradation or

denial of service.



TROJAN VULNERABILITY IN HLS-BASED WATERMARKED IPS

» Approaches [1], [2], [3] are examples of HLS-based watermarking for IP

designs.

» After embedding secret security constraints in the register allocation phase
of HLS, the multiplexer-based interconnect design may get altered and
yield a free port (input pin of mux) that can be exploited with malicious

intent by an attacker to insert Trojan.



Overview

» The talk provides a broad perspective for readers on how security vulnerabilities can be exploited by hackers
during the design of machine learning (ML) accelerators such as convolutional neural networks.

» It also provides a broad-spectrum review of existing literatures on how Trojan attacks can be injected, triggered,
and exploited to cause various payloads, such as degraded performance, denial of service, data damage, and
power/battery exhaustion, on ML accelerators.

» The article also discusses possible detection/mitigation techniques from the literature for some of the attacks and
recommends a possible solution.

A. Sengupta, A. Anshul, V. Chourasia and N. Bhui, “Security Vulnerability (Backdoor Trojan) During Machine Learning Accelerator Design Phases,” IEEE IT
Professional, vol. 27, no. 1, pp. 65-72, 2025.



ML/Hardware Accelerators

» ML/hardware accelerators enhance data-intensive tasks like image recognition, natural language processing, and
autonomous driving, enabling faster data processing and improved efficiency in real-life applications.

= Some real-life examples of ML accelerators are NVIDIA Deep Learning Accelerator (NVDLA) [4], LR hardware
accelerator [6], convolutional layer hardware accelerator [9], etc.
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Fig. 1. (a) Different design representations for machine learning (ML) accelerators, and (b) Different applications of ML accelerators

[4] N. Gupta, A. Jati and A. Chattopadhyay, Al Attacks Al: Recovering Neural Network architecture from NVDLA using Al-assisted Side Channel Attack, Cryptology {ePrint} Archive, Paper 2023/368, 2023,
url = https://eprint.iacr.org/2023/368.

[6] A. Sengupta, R. Chaurasia, M. Rathor: HLS-based swarm intelligence driven optimized hardware IP core for linear regression-based machine learning, IET Journal of Engineering, €12299 (2023).

[9] A. Sengupta and R. Chaurasia, "Secured Convolutional Layer IP Core in Convolutional Neural Network Using Facial Biometric," IEEE Transactions on Consumer Electronics, vol.68, no. 3, pp. 291-306,
2022.



Security Vulnerability in ML/Hardware Accelerators

» How do hackers (attackers) exploit security vulnerability in ML/Hardware accelerators?

= ML accelerators or in general hardware accelerators may be designed using HLS framework/RTL designing [3],
[6], [9]. In various steps of HLS/RTL design, attackers (within the design house) can compromise and exploit a
computer-aided design (CAD) software tool and/or RTL design to covertly inject backdoor Trojans.

= As shown in Fig. 1. (c), a hardware Trojan attack on a crypto-accelerator has capability to bypass the encryption
circuit and leak confidential information. On rare even triggering, the encryption is bypassed easily.

= Moreover, security vulnerability of NVIDIA accelerators (NVDLA) has been exposed in [4], as shown in Fig. 1.
(d). Power and side channel leakage information from CNN models have been used to train CNN based attack

models.
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Fig. 1. (c¢) Example of Trojan attack and security vulnerability in a cryptographic accelerator, and (d) Example
of Trojan attack and security vulnerability of a real-world application (NVDLA accelerator)

[3]Why you Need HLS for Machine Learning Accelerators, accessed in 2024, Available: https://resources.sw.siemens.com/en-US/video-why-you-need-hls-for-machine-learning-accelerators.
[4] N. Gupta, A. Jati and A. Chattopadhyay, Al Attacks Al: Recovering Neural Network architecture from NVDLA using Al-assisted Side Channel Attack, Cryptology {ePrint} Archive, Paper 2023/368, 2023, url =

https://eprint.iacr.org/2023/368.

[6] A. Sengupta, R. Chaurasia, M. Rathor: HLS-based swarm intelligence driven optimized hardware IP core for linear regression-based machine learning, /ET Journal of Engineering, €12299 (2023).
[9] A. Sengupta and R. Chaurasia, "Secured Convolutional Layer IP Core in Convolutional Neural Network Using Facial Biometric," IEEE Transactions on Consumer Electronics, vol.68, no. 3, pp. 291-306, 2022.
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Security Vulnerability in ML/Hardware Accelerators

» How do hackers (attackers) exploit security vulnerability in ML/Hardware accelerators?

= In another real-life scenario, an attacker can accelerate the aging process of a computing device, such as digital
signal processing (DSP) accelerator, by exploiting negative bias temperature instability (NBTI) stress as hardware
Trojan.

= By applying NBTI stress based Trojan attack, an attacker puts stress on PMOS transistors by increasing their
threshold voltage. This causes them to degrade in terms of performance delay and can expedite the aging related
performance degradation. This has been established in [5].

= Furthermore, an attacker can inject a trojan during scheduling phase, allocation phase and max interconnect design
phase. For example, a hacker can also secretly insert Trojan (pseudo/fake) operations during the scheduling phase
of the HLS design process (resulting in a battery exhaustion attack) [17].

= Further, a hacker can also exploit the Mux-based interconnect design stage during HLS to secretly insert Trojans
(such as denial-of-service hardware Trojan (DoS HT), performance degradation hardware Trojan (PD-HT), data
damage hardware Trojan (DD-HT)) into the ML accelerators (adopted from [7]).

The goal of the attacker while launching such Trojan attacks is to maliciously exploit any unused free port or under-
utilized resources to inject Trojan logic.

[5] D. Kachave and A. Sengupta, "Digital Processing Core Performance Degradation Due to Hardware Stress Attacks," IEEE Potentials, vol. 38, no. 2, pp. 39-45, March-April 2019.
[7]1 A. Sengupta, A. Anshul, V. Chourasia and N. Kumar, "M-HLS: Malevolent High-Level Synthesis for Watermarked Hardware IPs,” IEEE Embedded Systems Letters, 2024, doi: 10.1109/LES.2024.3416422.
[17] C. Pilato, K. Basu, F. Regazzoni and R. Karri, "Black-Hat High-Level Synthesis: Myth or Reality?," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 4, pp. 913-926, 2019.



Security Vulnerability in ML/Hardware Accelerators
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Fig. (a) Overview of Trojan attack during ML
accelerator design process, (b) Established Trojan
attacks on ML accelerator, and (c) Design flow of

ML (CNN) co-processor/accelerator (adopted

from [9]).

Note: ‘Iyy’and ‘Hpyy’ in the transfer function
represents the input image of size MxN and
kernal of size mxn respectively. Oy denotes the
output value of each element/pixel corresponding
to output feature map; further in the expanded
transfer function, each pixel value of the input
image matrix and each kernel value of kernel
matrix t’ is represented by g, and hf,q
respectively

[9] A. Sengupta and R. Chaurasia, "Secured Convolutional Layer IP Core in Convolutional Neural Network Using Facial Biometric," /IEEE Transactions on Consumer Electronics, vol.68, no. 3, pp. 291-306, 2022.



Security Vulnerability in ML/Hardware Accelerators

» As shown in Fig. (c), initially, the high-level code/transfer function of the ML application is taken as input. For
example, the CNN convolution layer’s transfer function is shown in Fig. 2.(c).

» Further, the expanded transfer function is generated. Next, the corresponding data flow graph (DFG/CDFQG) is
generated [9]. Subsequently, the DFG is fed as input to the HLS scheduling and allocation block. Finally, ML
accelerator RTL datapath is generated post datapath synthesis.

» Fig. (c) also depicts the datapath portion view of the CNN convolutional layer accelerator [9]. As evident in the
datapath portion view, some input ports are free (unutilized) in the Mux-based interconnect design of the shown
datapath (ports shown in orange).

» It has been established in the literature [7], that these unused free ports can be exploited by the attacker during
compromising a CAD HLS tool (to secretly insert the Trojan), without the knowledge of the ML accelerator designer
(who 1s using the tool), causing different payloads (such as denial-of-service hardware Trojan (DoS HT), performance
degradation hardware Trojan (PD-HT), data damage hardware Trojan (DD-HT)).

» Additionally, it has also been established in the literature [17], that an attacker can also exploit the scheduling phase of
the HLS framework to insert pseudo/fake operations to launch a battery exhaustion attack.

» The various Trojan payloads [2] can cause different types of adversarial effects in ML accelerators.

[2] Xue, M., Gu, C., Liu, W., Yu, S. and O'Neill, M. (2020), Ten years of hardware Trojans: a survey from the attacker's perspective. IET Comput. Digit. Tech., 14: 231-246.

[7]1 A. Sengupta, A. Anshul, V. Chourasia and N. Kumar, "M-HLS: Malevolent High-Level Synthesis for Watermarked Hardware IPs,” IEEE Embedded Systems Letters, 2024, doi: 10.1109/LES.2024.3416422.
[9] A. Sengupta and R. Chaurasia, "Secured Convolutional Layer IP Core in Convolutional Neural Network Using Facial Biometric," IEEE Transactions on Consumer Electronics, vol.68, no. 3, pp. 291-306,
2022.

[17] C. Pilato, K. Basu, F. Regazzoni and R. Karri, "Black-Hat High-Level Synthesis: Myth or Reality?," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 4, pp. 913-926, 2019.
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TROJAN VULNERABILITY IN HLS-BASED WATERMARKED IPS

Fig. Scheduled data flow graph of MESA Horner Fig. Scheduled data flow graph of MESA Horner
Bezier without watermark Bezier with embedded watermark
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PROPOSED MALEVOLENT HLS FRAMEWORK

» Fig.highlights the proposed malevolent high-level synthesis framework.
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Types of Trojan Attacks

» The four established Trojan attacks on ML
accelerators are as follows:

e Performance hardware

Trojan (PD-HT),
* Data damage hardware Trojan (DD-HT),

* Denial-of-service hardware Trojan (DoS-
HT), and

 Battery exhaustion Trojan (BE-HT).

degradation

Note: Here, the orange-colored components
indicate Trojan logic inserted by the attacker and
orange free port input on top of 8xI multiplexer
indicates unutilized port exploited by the hacker
for secret Trojan insertion.
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Types of Trojan Attacks (Contd.)

» Fig. (e) demonstrates the integration of a BE-HT in the ML accelerator, designed to increase power consumption
and speed up battery depletion.

e The primary goal is to reuse the idle functional units (FUs) in the ML accelerator datapath. Multipliers, which
have larger power dissipation, are chosen to increase the overall power consumption of the accelerator. Such

modifications in the datapath have nominal area and power overhead.

e This technique does not affect the final computational output while concurrently not enhancing the power
overhead of the design substantially.
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Triggering of Backdoor Trojan

» Hardware Trojans are stealthily inserted into systems that become active only when a specific rare condition
(predetermined by the attacker) 1s met.

» This activation has been managed through comparator logic that switches on the Trojan’s payload when the rare
condition is satisfied.

» These Trojans are extremely difficult to detect because they stay inactive (dormant and undetected until triggered
by specific conditions) during regular system operations. During the insertion of the Trojan, an attacker programs a
constant value ‘k’ into memory (electrically programmable) [7].

» As shown in Figures (b), (c), and (d), the first input (t) of the comparator is connected internally to the functional
units (such as adders, multipliers, etc.) of remaining ML accelerator datapath, and the second input is connected to
memory holding pre-loaded constant ‘k’. Once the system’s state (t) matches this constant (k), the Trojan becomes
triggered, causing it to execute its intended malicious effects.

» The above-explained trigger condition is the same for PD-HT, DD-HT, and DoS-HT. However, BE-HT has been
designed in the literature to become triggered after a certain count value of the counter [17].

» These Trojans not only compromise the security of ML designs but also erode the trust between the ML accelerator
vendors and CAD software communities [5].

[5] D. Kachave and A. Sengupta, "Digital Processing Core Performance Degradation Due to Hardware Stress Attacks," IEEE Potentials, vol. 38, no. 2, pp. 39-45, March-April 2019.
[7]1 A. Sengupta, A. Anshul, V. Chourasia and N. Kumar, "M-HLS: Malevolent High-Level Synthesis for Watermarked Hardware IPs,” IEEE Embedded Systems Letters, 2024, doi: 10.1109/LES.2024.3416422.
[17] C. Pilato, K. Basu, F. Regazzoni and R. Karri, "Black-Hat High-Level Synthesis: Myth or Reality?," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 4, pp. 913-926, 2019.
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Detection Techniques Employed for Backdoor
Trojans in ML Accelerators

S. Different detection techniques Performance degradation  Data damage  Denial-of-service Battery (Power)
No. Trojan attack Trojan attack Trojan attack exhaustion Trojan attack
1 C to RTL Equivalence checking X v X v
[10]
2 TL-HLS (DMR based security- X X X X
aware scheduling) [11]
3 Side channel analysis [12] X X X X
4 Detection using reverse X X X X
engineering [13]
5 Detection using path delay X X x x
fingerprint [14]
6 GNN based detection [15] X X X X
7 HLT based detection [16] X X X v

(a)

Fig. (a) Analysis of different detection techniques on Trojan infected ML accelerator designs (Note: ‘x’ indicates “not detectable™)

[10] M. Abderechman, R. Gupta, R. R. Theegala and C. Karfa, "BLAST: Belling the Black-Hat High-Level Synthesis Tool," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no.
11, pp. 3661-3672, 2022.

[11] A. Sengupta, S. Bhadauria and S. P. Mohanty, "TL-HLS: Methodology for Low Cost Hardware Trojan Security Aware Scheduling With Optimal Loop Unrolling Factor During High Level Synthesis," /IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 36, no. 4, pp. 655-668, 2017.

[12] Y. Huang, S. Bhunia and P. Mishra, "Scalable Test Generation for Trojan Detection Using Side Channel Analysis," IEEE Transactions on Information Forensics and Security, vol. 13, no. 11, pp. 2746-2760, 2018.
[13] M. Ludwig, A. -C. Bette and B. Lippmann, "ViTaL: Verifying Trojan-Free Physical Layouts through Hardware Reverse Engineering," IEEE Physical Assurance and Inspection of Electronics, USA, 2021, pp. 1-8.
[14] Y. Jin and Y. Makris, “Hardware trojan detection using path delay fingerprint,” IEEE International Workshop on HOST, 2008, pp. 51-57.

[15] R. Yasaei, L. Chen, S. -Y. Yu and M. A. A. Faruque, "Hardware Trojan Detection using Graph Neural Networks," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022.

[16] M. Rathor and A. Sengupta, "Revisiting Black-Hat HLS: A Lightweight Countermeasure to HLS-Aided Trojan Attack," IEEE Embedded Systems Letters, Volume: 16, Issue: 2, 2024, pp. 170-173.
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Detection Techniques Employed for Backdoor
Trojans in ML Accelerators (Contd.)

» Diftferent types of Trojans, like PD-HT and DoS-HT, impacting performance and operational state, without altering
functionality, makes them difficult to detect using equivalence checking [7], [10].

» On the other hand, DD-HT affects data output under rare condition triggering, making detection somehow possible
through equivalence analysis [10].

» Further, BE-HT has been successfully detected using C to RTL equivalence checking based on finite state machine
datapath (FSMD) extraction. Further, these Trojans remain undetected through side-channel analysis [12] as they
don’t leak significant parametric information (such as delay and power).

» Techniques like path delay fingerprinting [14], attempt to differentiate normal designs from those compromised by
Trojans, however, they become impractical for complex HLS-generated ML accelerator.

» Detection tools relying on Graph Neural Networks (GNN) [15] face limitations in accurately detecting Trojans
within ML accelerators, because its performance/accuracy for complex ML accelerators 1s lower due to weaker
learning behavior.

» Moreover, the detection technique [16] is only capable of handling BE-HT attacks, as PD-HT, DD-HT, and DoS-
HT do not induce Trojan payload using fake operation insertion.

» Therefore, based on the published detection techniques for Trojans, C to RTL functional equivalence checking [10]
has been the most effective technique as it is capable of detecting both BE-HT and DD-HT.

[10] M. Abderehman, R. Gupta, R. R. Theegala and C. Karfa, "BLAST: Belling the Black-Hat High-Level Synthesis Tool," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 41, no. 11, pp. 3661-3672, 2022.
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Analysis of ML Accelerators in terms of Design

Area, Latency, and Resources
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Fig. (b) Design area for LR-ML
accelerator corresponding to different
numbers of datasets (N) [6], (c) Design
latency for LR-ML accelerator
corresponding to different numbers of
datasets (N) [6], (d) Trojan design area
overhead (in terms of gate count)
corresponding to convolutional layer
CNN accelerator [7], (e) Trojan power
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layer CNN accelerator [7], (f)
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different convolutional kernel filters (K),
and (g) Resources required for
convolutional layer datapath w.r.t. three
different kernels
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Analysis of ML Accelerators in terms of Design
Area, Latency, and Resources (Contd.)

» This section presents the analysis of different ML accelerator designs from the literature. Figures (b) and (c) depict
the design area and latency for the LR-ML accelerator corresponding to different numbers of datasets (N),
respectively [6].

» The design area and latency are directly proportional to the number of datasets it handles. Subsequently, figures
(d) and (e) show the design area (in terms of gate count) and power overhead corresponding to convolutional layer
CNN accelerator after Trojan injection, respectively [7].

» The Trojan-infected design, on average, incurs a minimal increase in the ~196 gate count value and ~1.6 pw power
as compared to the baseline ML-accelerator design [7].

» Next, Fig. (f) shows the comparison of pixel computation between [8] and [9] for different convolutional kernel
filters (K).

» Approach [9] surpasses [8] in terms of pixel computation value due to parallel pixel computation process owing to
loop unrolled architecture. Finally, Fig. (g) highlights required resources for convolutional layer accelerator
datapath w.r.t. three different kernels [9].

[6] A. Sengupta, R. Chaurasia, M. Rathor: HLS-based swarm intelligence driven optimized hardware IP core for linear regression-based machine learning, /ET Journal of Engineering, €12299 (2023).

[7] A. Sengupta, A. Anshul, V. Chourasia and N. Kumar, "M-HLS: Malevolent High-Level Synthesis for Watermarked Hardware IPs," IEEE Embedded Systems Letters, 2024, doi: 10.1109/LES.2024.3416422.
[8] S. Albawi, T. A. Mohammed and S. Al-Zawi, "Understanding of a convolutional neural network," International Conference on Engineering and Technology, Turkey, 2017, pp. 1-6.

[9] A. Sengupta and R. Chaurasia, "Secured Convolutional Layer IP Core in Convolutional Neural Network Using Facial Biometric," IEEE Transactions on Consumer Electronics, vol.68, no. 3, pp. 291-306,
2022.
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HLS Trojan Detection using Machine Learning
Technique

» A HLS Trojan detection technique has been proposed that is capable of detecting the following HLS Trojans:
performance degradation hardware Trojan (PD-HT), denial-of-service hardware Trojan (DoS-HT), battery exhaustion
hardware Trojan (BE-HT), downgrade attack hardware Trojan (DA-HT), and functional hardware Trojan (F-HT).

» A feature extraction block has been proposed, which is responsible for the extraction of several crucial features from
hardware intellectual property (IP) register transfer level (RTL) design (such as VHDL).

» A HLS Trojan detection technique has been proposed using lightweight decision tree classifier-based machine
learning (ML) model.

» Threat model. Trojans in HLS-based hardware IP designs present significant security vulnerability, exploiting the
automated and abstract nature of HLS tools. Compromised HLS flows/tools may embed malicious Trojans, degrading
IP integrity during key HLS design phases, like scheduling, resource allocation, interconnect design, and
datapath/controller synthesis phase, enabling national-level attacks on system-on-chip (SoC) development and
undermining hardware security [1], [2].

[1] A. Sengupta, A. Anshul, V. Chourasia and N. Kumar, "M-HLS: Malevolent High-Level Synthesis for Watermarked Hardware IPs," IEEE Embedded Systems Letters, 2024, doi:
10.1109/LES.2024.3416422.

[2] C. Pilato, K. Basu, F. Regazzoni and R. Karri, "Black-Hat High-Level Synthesis: Myth or Reality?," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 4, pp. 913-
926, April 2019.
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TABLE I
DIFFERENT TYPES OF HLS-TROJANS, THEIR HLS BASED INSERTION STAGES, AND CORRESPONDING TRIGGERING MECHANISM, PAYLOAD

PD-HT Muzx-interconnect design Comparator based trigger Performance degradation Exploiting chain of inverters to cause excessive delay
DoS-HT Mux-interconnect design Comparator based trigger Denial-of-service Exploiting 7S5B to cause high impedance state
BE-HT Scheduling/FSM Counter-based trigger Battery exhaustion/power Exploiting unutilized functional units to cause excess
drainage power drainage based on a certain execution count
DA-HT Datapath Input sequence detector Downgrade Exploiting a 2:/ Mux to implement downgrade attack
attack/compromised security
F-HT HLS library External signal, FSM Compromising Exploiting a 2:1 Mux and inverter to alter the
counter functionality/data damage functionality of used functional units

Input: Register transfer level (RTL) description of hardware [Ps (VHDL
code) - Trojan infected HLS based RTL/Non-infected HLS based RTL

|
Trojan infected Non-infected
HLS based RTL HLS based RTL
Feature extraction block Feature extraction block

Extracted features  Extracted features|from
from RTL (Fn) RTL (Fni)

Database formation for ML framework
|

v v

Training Testing
database database

Decision tree o
classifier Decision tree-
based ML model

Trained decision-making model

v

Final detection of HLS-Trojan

Fig. Details of the proposed ML-based HLS-Trojan detection
methodology



Input: RTL description of hardware IPs ( VHDLI
code) - Trojan infected HLS based RTL/non—= """""""""""" AR
infected HLS based RTL IF (Adder 3 1)

Qutput: Feature set corresponding to input RTL Adder = Adder + 1
IF (Subtractor 3 1)

Subtractor = Subtractor + 1
IF (Multiplier 3 1)
Muiltiplier = Multiplier + 1
IF (Comparator 3 i)
comparator = 1
IF (up_counter 3 i)
Up-counter = 1
IF (tri_state_buffer 3 i)
Tri-state buffer =1
END IF
END FOR
IF (Output of register - input of
comparator || Output of register = input of
Mux in @)
Memory element =1
IF (Output of Mux = input of another
Mux in @)
Mux output acting as input for
another Miix =1
IF (Output of NOT gate = input of
another NOT gate in @)
Inverter Chain =1
IF (Third input port of a component
(functional unit) 3 &)
Third FU Input=1

R € RTL description file
@ € Port map information present in R
FOR cach line (/) in R

IF (mux 2 to 131)

2%] Mux =2*] Mux +1
IF (mux 4 to 131)

4% Mux = 4*] Mux +1
IF (mux 8 fo 131)

8*1 Mux =8*1 Mux +1
IF (mux 16 to 131i)

16*]1 Mux =16*1 Mux +1
IF (mux 32 fo 131i)

32%] Mux =32%] Mux +1
IF (demux 2 to 13i)

2*] DeMux = 2*1 DeMux + 1
IF (demux 4 to 131i)

4*] DeMux = 4*1DeMux + 1
IF (demux 8 to 13i)

8*1 DeMux = 8*1 DeMux + 1
IF (demux 16 to 131)

16*1 DeMux = 16*1 DeMux +1
IF (demux 32 to 131)

32%1 DeMux = 32%] DeMux +1
IF (latch 3 i)

Latch = Latch + 1

Fig. Algorithm (Pseudocode) to perform feature extraction from the input RTL
description (VHDL code) of hardware IP design



TABLE II
THE COMPARISON OF PROPOSED ML-BASED HLS-TROJAN DETECTION APPROACH WITH DIFFERENT HARDWARE TROJAN DETECTION APPROACHES IN
STATE-OF-THE-ART (SOTA) (NOTE: “x’ INDICATES “NOT DETECTABLE”)

1 C to RTL Equivalence checking [3] X v X v v FN>0% | FP >0%

2 TL-HLS (DMR based security-aware scheduling) [4] X X X X v FN=0% | FP =0%

3 Detection using path delay fingerprint [5] X X X X v FN=0% | FP =0%

4 HLT based detection [6] X X X v X FN=0% | FP =0%

5 TMR based HLS detection [7] X X X X v FN=0% | FP =0%

6 Proposed ML based detection methodology v v v v v FN=0% | FP >0%
TABLE III

TROJAN DETECTION STATUS ALONG WITH DETECTION TIME

CNN convolutional layer IP, FIR PD-HT, DoS-HT,
Filter IP, DCT IP, IIR Filter DA-HT,BE-HT, Yes 789
IP, and Sharpening Filter 1P F-HT

» Our feature extraction code is available publicly in [8].

» The HLS-Trojan database consists of several instances corresponding to several benchmarks. The details of the
benchmarks including their CDFGs and transfer functions along with created database are publicly available in

[8].

[3] M. Abderehman, R. Gupta, R. R. Theegala and C. Karfa, "BLAST: Belling the Black-Hat High-Level Synthesis Tool," /EEE Transactions on CAD, vol. 41, no. 11, pp. 3661-3672, 2022.

[4] A. Sengupta, S. Bhadauria, S. P. Mohanty, "TL-HLS: Methodology for Low Cost Hardware Trojan Security Aware Scheduling With Optimal Loop Unrolling Factor During High Level
Synthesis," IEEE Transactions on CAD, vol. 36, no. 4, pp. 655-668, April 2017.

[5]1Y.Jin and Y. Makris, “Hardware trojan detection using path delay fingerprint,” IEEFE International Workshop on HOST, 2008, pp. 51-57.

[6] M. Rathor and A. Sengupta, "Revisiting Black-Hat HLS: A Lightweight Countermeasure to HLS-Aided Trojan Attack," IEEE Embedded Systems Letters, Volume: 16, Issue: 2, 2024, pp. 170-173.
[7] A. Sengupta, A. Anshul, R. Chaurasia, Exploration of optimal functional Trojan-resistant hardware intellectual property (IP) core designs during high level synthesis, Elsevier Microprocessors and
Microsystems, Vol. 103, 2023, 104973.

[8] GitHub Repository, Available [Online]: https://github.com/ryderaadi/HLS-Trojan-Database--HLS-TD.



Securing hardware accelerators using biometric fingerprinting: Forensics

IP vendor’s
fingerprint

. 1111011001000101011100100101101011001
Digital template

j— Secured hardware accelerator [
Piracy —_ i IP/IC wi.th embeddgd ) <— False claim .of P
* _ biometric fingerprint . ownership

S

PR R TR R R
EVTTSTUNY ki hhibibibade

Anirban Sengupta, Mahendra Rathor "Securing Hardware Accelerators for CE Systems using Biometric Fingerprinting", IEEE
Transactions on Very Large Scale Integration Systems (TVLSI) , Accepted, 2020



Securing hardware
accelerators using biometric
fingerprinting: Forensics

Input fingerprint of IP vendor

-~ _=

111101000100011101110
011

P
< -

Mapping Rules

Hardware

accelerator design

Biometric fingerprint implanted hardware accelerator design

Anirban Sengupta, Mahendra Rathor "Securing Hardware Accelerators for CE Systems using Biometric Fingerprinting", IEEE
Transactions on Very Large Scale Integration Systems (TVLSI) , Accepted, 2020



—_— Securing hardware

1 = = e
oo = S lerators usi
150 e accelerators using
200 '—//f‘?\_\%\b‘ }_L e . . .. .
250 S biometric fingerprinting:
e \1::.-._":: 3:-}\‘\\\-.‘:5}:" .
soo NESSS Forensics: An example

100 200 300
(a)  Input fingerprint image (101 1)

(b) Binary image

(c) Thinned image

(d) Minutiae points

Minutiae points extraction flow (a) Captured fingerprint image (b) Binary fingerprint image post enhancement (c) Fingerprint image post applying thinning (d) Fingerprint

image with minutiae points located
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Minutiae points=22

-

11011000101110111110110111110..........
01001100111101

Corresponding Digital Template
(Total size =526 bits)

< -

#0s=224
#1s=302

Secret biometric constraints for IC/IP

Fingerprint image:101_2

Minutiae points=15

-

1011111010110111100010100010111.......
.01001111101111

Corresponding Digital Template
(Total size =350 bits)

~ -

#0s= 148
#1s=202

Secret biometric constraints for IC/IP

Minutiae points=24

-

10010110101101101001110101011010...

110101111111110 J

Corresponding Digital Template
(Total size =555 bits)

< -

#0s= 242
#1s=312

Secret biometric constraints for IC/IP

Anirban Sengupta, Mahendra Rathor "Securing Hardware Accelerators for CE Systems using Biometric Fingerprinting", IEEE

Transactions on Very Large Scale Integration Systems (TVLSI) , Accepted, 2020



Secured datapath of JPEG compression hardware accelerator implanted with biometric fingerprint
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| €1 mux \ &:1mux / : 2:1 mux ll l
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= |
|
| 5
I\ 1:8 demux 1:8 demux 1 delriilx l
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Interconnection Box
I I T3 ;\H fffffff HIJ; ;\u ------- H}. I Tvy  pii iy
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Latchstrobe M1 Latchstrobe M3
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Transactions on Very Large Scale Integration Systems (TVLSI) , Accepted, 2020



Detecting Biometric Fingerprint in a hardware accelerator

Counterfeited design

No match with the
attacker’s template)

Yes (correct match with the
owner’s template)

A\
False claim of ownership proved Ownership awarded to true IP owner

Fig. 9. Proving true IP ownership using proposed detection approach

Anirban Sengupta, Mahendra Rathor "Securing Hardware Accelerators for CE Systems using Biometric Fingerprinting"
Transactions on Very Large Scale Integration Systems (TVLSI) , Accepted, 2020
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Palmprint based Hardware Security for IPP

IP core vendor

Secured CE devices

- W

IP
piracy/counterfeiting

Digital template |

ElllDDlDl 110000 10000 g
T001RE..... 11010101 FATS—
0 0011 E g D=P core
Generated with the E
help of nodal points [
Palmprint biometric on the palm image Implanting covert Secured
security constraints into DSP IP core
DSP IP core

Securing reusable DSP IP core used in CE systems

Anirban Sengupta, Rahul Chaurasia, Tarun Reddy "Contact-less Palmprint Biometric for Securing DSP Coprocessors used in CE
systems", IEEE Transactions on Consumer Electronics (TCE) , Volume: 67, Issue: 3, August 2021, pp. 202-213

Rahul Chaurasia, Aditya Anshul, Anirban Sengupta "Palmprint Biometric vs Encrypted Hash based Digital Signature for Securing DSP
Cores Used in CE systems", IEEE Consumer Electronics (CEM) , Volume: 11, Issue: 5, September 2022, pp. 73-80



Palmprint based Hardware Security for IPP

; | | Algorithmic

- |Capture palmprint biometric | Vendor’s || Eeaalcs s representation of | |
| withgridsizeand spacing | ||| palmprint | GOt library DSP application | |
" [ Derive nodal points on palm & Finding palmprint

§ image | features set

Assign naming convention on Encodingrules -

! nodal points ! v Implanting secret

| ! TR —_— information in HL.S

i > ! O | framework

Generate image with palm| | security constraints @

i features | :

. . Secret

: ,\J_l/, ! : : 11010...01

E - . . ! nformation RTL datapath of DSP co-

' | Determine feature dimensions :> Generate palmprint processor with palmprint

. between nodal points for selected signature signature implanted

' |palm features and decide feature

order

Anirban Sengupta, Rahul Chaurasia, Tarun Reddy "Contact-less Palmprint Biometric for Securing DSP Coprocessors used in CE
systems", IEEE Transactions on Consumer Electronics (TCE) , Volume: 67, Issue: 3, August 2021, pp. 202-213

Rahul Chaurasia, Aditya Anshul, Anirban Sengupta "Palmprint Biometric vs Encrypted Hash based Digital Signature for Securing DSP
Cores Used in CE systems", IEEE Consumer Electronics (CEM) , Volume: 11, Issue: 5, September 2022, pp. 73-80 32



Palmprint based Hardware Security for IPP

|o 100 | 200 |300 | 500

» Capturing palm image

* At first the palmprint biometric of
the authentic vendor or designer is
captured and subsequently image of
the captured palmprint is subjected
to a specific grid size/spacing.

* This helps in generating the nodal
points precisely.

Anirban Sengupta, Rahul Chaurasia, Tarun Reddy "Contact-less Palmprint Biometric for Securing DSP Coprocessors used in CE systems",
IEEE Transactions on Consumer Electronics (TCE) , Volume: 67, Issue: 3, August 2021, pp. 202-213



Palmprint based Hardware Security for IPP

» Generating image with chosen palm features
and nodal points

1uu|

* Finding Palmprint Feature Set and
Deriving Nodal Points for Captured
Palmprint Biometric.

200/

300

* Assigning Naming Convention and
Deriving Palmprint Image with Selected
Feature set.

400

500

0]

Anirban Sengupta, Rahul Chaurasia, Tarun Reddy "Contact-less Palmprint Biometric for Securing DSP Coprocessors used in CE systemg",
IEEE Transactions on Consumer Electronics (TCE) , Volume: 67, Issue: 3, August 2021, pp. 202-213



Palmprint based Hardware Security for IPP

Feature #

Fl

F2

F3
F4

F5

Fo6

E7

F8

F9

F10

F11

Fl2

F13

Fl14

F15

Fle

F17

F18

F19

SELECTED

Palmprint feature name

Distance between start of life line and end
of life line (DL)
Distance between datum points of head line
and life line (DHL)
Width of the palm (WP)
Length of palm (LP)

Distance between first consecutive
intersection points of forefinger (DFF)
Distance between second consecutive
intersection points of forefinger (DSF)
Distance between third consecutive
intersection points of forefinger (DTF)
Distance between first consecutive
intersection points of middle finger (DFM)
Distance between second consecutive
intersection points of middle finger (DSM)
Distance between third consecutive
intersection points of middle finger (DTM)
Distance between first consecutive
intersection points of ring finger (DFR)
Distance between second consecutive
intersection points of ring finger (DSR)
Distance between third consecutive
intersection points of ring finger (DTR)
Distance between first consecutive
intersection points of little finger (DFL)
Distance between second consecutive
intersection points of little finger (DSL)
Distance between third consecutive
intersection points of little finger (DTL)
Distance between first consecutive
intersection points of thumb finger (DFT)
Distance between second consecutive
intersection points of thumb finger (DST)
Distance between starburst point and third
intersection point of thumb (DTT)

19 PALMPRINT FEATURES, CORRESPONDING NODAL POINTS AND CO-ORDINATES

Naming conventions of

nodal points

(P1o)

(P23)

(P16)
(P13)

(P2)
(P5)
(P9)
(P1)
(P4)
(P8)
(P3)
(P6)
(P10)
(P7)
(P11)
(P14)
(P18)
(P21)

(P19)

(P24)

(P24)

(P20)
(P25)

(P5)
(P9)
(P12)

(P4)

(P6)
(P10)
(P15)
(P11)
(P14)
(P17)
(P21)
(P22)

(P22)

Co-ordina
(230,

(405,

(230,
(350,

(300,
(285,
(285,

(350,
(350,
(350,

(415,
(415,
(415,
(495,
(495,
(495,

(70,
(120,

(180,

tes (x1,yl)-
390) - (285,
520) -(285,
390) - (495,
325)- (350,
30)- (285,
130)- (285,
230) - (285,
5)- (350,
110)- (350,
220) - (350,
50)- (415,
160)- (415,
245) - (415,
170)- (495,
265) - (495,
335) - (495,
470)- (120,
495)- (165,
480) -(165,

(x2,y2)
650)

650)

490)
650)

130)
230)
320)

110)
220)
325)

160)
245)
355)
265)
335)
405)

495)
520)

520)
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Palmprint based Hardware Security for IPP

> Flndlng Feature DlmenSlonS and Deerlng Palmprlnt FEATURE DIMENSION AND CORRESPONDING BINARY REPRESENTATION OF

. . Feature Feature Feature . .
* For example, a palmprint signature for the selected order of 4 SO e Binary representation
palmprint features (“DL$ DHL --- & DTT”. Where, ‘F’ FI DL 26575 10000100111
: : - F2 DHL 176.91 10110000.111010001111010111
represents. the concatenation operator) after concatenation is o s g R S e
as follows: F4 LP 325 101000101
. . F5 1933 101.11  1100101.00011100001010001111
i Palmprmt Slgnature: F6 DSF 100 1100100
3 ., F7 DTF 90 1011010
100001001.1110110000.111010001111010111.---.11111 8 DFM 105 1101001
F9 DSM 110 1101110
F10 DIM 105 1101001
F11 DFR 110 1101110
F12 DSR 85 1010101
F13 DTR 110 1101110
F14 DFL 95 1011111
F15 DSL 70 1000110
F16 DTL 70 1000110

F17 DET 55.90 110111.1110011001100110011
F18 DST 51.45 110011.01110011001100110011
F19 DTT 4272 101010.10111000010100011111

Note: Size of the palmprint signature varies based on the number of chosen palm features by the vendor for

signature generation (depending on the required security strength corresponding to target application). »



Palmprint based Hardware Security for IPP

» Deriving the Covert Security Constraints and
Implanting into Target IP core Design TABLE]

REGISTER ALLOCATION OF A TARGET HARDWARE IP CORE
POST IMPLANTATION

— — : Registers 0 i1 2 3 @4 5 i i 8 U
* Post obtaining the digital template of palmprint tgbters 9L bRk

signature, corresponding hardware security constraints G T0 T8 TIT T4 T M6 7 T8 19 T30
are generated based on the encoding rules. O TL P T9 0 TI6 - - - e e e
: : : . R3 2 TIL T8 T8 - - - -4
* The encoding rules for the signature bits are as follows: O T T T TIO TIO - i
The bit °1° embeds an edge between node pair (odd- ™4 T4 T3 T0 T0 T0 -
odd), bit ‘0’ embeds an edge between node pair (even- TS T5 T2 T2 T2 121 T2 -
even). Moreover, the binary bit ‘. embeds an edge T6 TIS P12 122 122 022 122 -
between node pair (0, integer) into the CIG of target DSP N 77 7 T4 T8 T8 13 T3 13 I3
design. 8 TIO TIO TIO = o - .
9 - T4 - 126 - T8 - T30

* For example, for a sample design having 31 storage

variables (TO to T30) executing through 8 registers (R1 s T8 1

. K — — - 7 ) ali 17 — —
to R8), the generated security constraints corresponding ? - %9 ;O ;[;1 ;1 "
to the zeros are: <T0, T2>, <T0, T4>---<T16, T28>, the - cooe e e
security constraints corresponding to ones are: <T1, R14 T T T

T3>, -—--- <T27, T29> and corresponding to the binary RIS - - - T3 T3 T3 T8 T3 T2

points are: <TO0, T1>, <TO, T3>, -- -, <TO, T11>.
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RESULTS AND DISCUSSION

* The proposed palmprint biometric approach is analyzed in terms of security and design overhead.

* The security of the proposed approach is analyzed in terms of probability of coincidence (Pc) and
temper tolerance (TT) ability.

 The Pc metric is formulated as follows:

NS
Pc = (1 - ;) (1)
e The TT metric 1s formulated as follows:
TT = P¢ (2)
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Conclusion

» This talk presents Trojan attacks on ML accelerators and its detection techniques.

» The talk also infers that tackling the problem of security vulnerability in ML accelerators is a wide-open research area
for the cybersecurity community.

» The talk also discusses potential countermeasures for HLS Trojan detection.
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