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 INTRODUCTION 

 A hardware Trojan is a malicious logic inserted into an IP design during its 

design or manufacturing process.  

 Hardware Trojan are designed to remain undetected until triggered by 

specific conditions.  
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 MOTIVATION AND THREAT MODEL 

The goal of this approach is to highlight how a malicious HLS framework 

is capable of inserting hardware Trojans during the Mux-based 

interconnect stage of watermarked IP design.  

The impact of a malicious HLS tool may be performance degradation or 

denial of service.  
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  TROJAN VULNERABILITY IN HLS-BASED WATERMARKED IPS 

Approaches [1], [2], [3] are examples of HLS-based watermarking for IP 

designs. 

 

After embedding secret security constraints in the register allocation phase 

of HLS, the multiplexer-based interconnect design may get altered and 

yield a free port (input pin of mux) that can be exploited with malicious 

intent by an attacker to insert Trojan. 
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Overview 
 The talk provides a broad perspective for readers on how security vulnerabilities can be exploited by hackers 

during the design of machine learning (ML) accelerators such as convolutional neural networks.  

 

 It also provides a broad-spectrum review of existing literatures on how Trojan attacks can be injected, triggered, 
and exploited to cause various payloads, such as degraded performance, denial of service, data damage, and 
power/battery exhaustion, on ML accelerators.  

 

 The article also discusses possible detection/mitigation techniques from the literature for some of the attacks and 
recommends a possible solution.  
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A. Sengupta, A. Anshul, V. Chourasia and N. Bhui, “Security Vulnerability (Backdoor Trojan) During Machine Learning Accelerator Design Phases,” IEEE IT 
Professional, vol. 27, no. 1, pp. 65-72, 2025.  



ML/Hardware Accelerators  
ML/hardware accelerators enhance data-intensive tasks like image recognition, natural language processing, and 

autonomous driving, enabling faster data processing and improved efficiency in real-life applications.  

 Some real-life examples of ML accelerators are NVIDIA Deep Learning Accelerator (NVDLA) [4], LR hardware 
accelerator [6], convolutional layer hardware accelerator [9], etc.  
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[4] N. Gupta, A. Jati and A. Chattopadhyay, AI Attacks AI: Recovering Neural Network architecture from NVDLA using AI-assisted Side Channel Attack, Cryptology {ePrint} Archive, Paper 2023/368, 2023, 
url = https://eprint.iacr.org/2023/368. 
[6] A. Sengupta, R. Chaurasia, M. Rathor: HLS-based swarm intelligence driven optimized hardware IP core for linear regression-based machine learning, IET Journal of Engineering, e12299 (2023). 
[9] A. Sengupta and R. Chaurasia, "Secured Convolutional Layer IP Core in Convolutional Neural Network Using Facial Biometric," IEEE Transactions on Consumer Electronics, vol.68, no. 3, pp. 291-306, 
2022. 
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Fig. 1. (a) Different design representations for machine learning (ML) accelerators, and (b) Different applications of ML accelerators 

(a) (b) 



Security Vulnerability in ML/Hardware Accelerators 
How do hackers (attackers) exploit security vulnerability in ML/Hardware accelerators? 

 ML accelerators or in general hardware accelerators may be designed using HLS framework/RTL designing [3], 
[6], [9]. In various steps of HLS/RTL design, attackers (within the design house) can compromise and exploit a 
computer-aided design (CAD) software tool and/or RTL design to covertly inject backdoor Trojans.  

 As shown in Fig. 1. (c), a hardware Trojan attack on a crypto-accelerator has capability to bypass the encryption 
circuit and leak confidential information. On rare even triggering, the encryption is bypassed easily.  

 Moreover, security vulnerability of NVIDIA accelerators (NVDLA) has been exposed in [4], as shown in Fig. 1. 
(d). Power and side channel leakage information from CNN models have been used to train CNN based attack 
models. 
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Fig. 1. (c) Example of Trojan attack and security vulnerability in a cryptographic accelerator, and (d) Example 

of Trojan attack and security vulnerability of a real-world application (NVDLA accelerator)  
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Security Vulnerability in ML/Hardware Accelerators 
How do hackers (attackers) exploit security vulnerability in ML/Hardware accelerators? 

 In another real-life scenario, an attacker can accelerate the aging process of a computing device, such as digital 
signal processing (DSP) accelerator, by exploiting negative bias temperature instability (NBTI) stress as hardware 
Trojan.  

 By applying NBTI stress based Trojan attack, an attacker puts stress on PMOS transistors by increasing their 
threshold voltage. This causes them to degrade in terms of performance delay and can expedite the aging related 
performance degradation. This has been established in [5].  

 

 Furthermore, an attacker can inject a trojan during scheduling phase, allocation phase and max interconnect design 
phase. For example, a hacker can also secretly insert Trojan (pseudo/fake) operations during the scheduling phase 
of the HLS design process (resulting in a battery exhaustion attack) [17].  

 Further, a hacker can also exploit the Mux-based interconnect design stage during HLS to secretly insert Trojans 
(such as denial-of-service hardware Trojan (DoS HT), performance degradation hardware Trojan (PD-HT), data 
damage hardware Trojan (DD-HT)) into the ML accelerators (adopted from [7]).  

The goal of the attacker while launching such Trojan attacks is to maliciously exploit any unused free port or under-
utilized resources to inject Trojan logic.  
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Security Vulnerability in ML/Hardware Accelerators 
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Fig. (a) Overview of Trojan attack during ML 

accelerator design process, (b) Established Trojan 

attacks on ML accelerator, and (c) Design flow of 

ML (CNN) co-processor/accelerator (adopted 

from [9]).   

 

Note: ‘𝑰𝑴𝑵’and ‘𝑯𝒎𝒏’ in the transfer function 

represents the input image of size MxN and 

kernal of size mxn respectively. 𝑶𝒚 denotes the 

output value of each element/pixel corresponding 

to output feature map; further in the expanded 

transfer function, each pixel value of the input 

image matrix and each kernel value of kernel 

matrix ’t’ is represented by 𝑰𝒂𝒃  and 𝒉𝒑𝒒
𝒕  

respectively 

[9] A. Sengupta and R. Chaurasia, "Secured Convolutional Layer IP Core in Convolutional Neural Network Using Facial Biometric," IEEE Transactions on Consumer Electronics, vol.68, no. 3, pp. 291-306, 2022. 



Security Vulnerability in ML/Hardware Accelerators 
As shown in Fig. (c), initially, the high-level code/transfer function of the ML application is taken as input. For 

example, the CNN convolution layer’s transfer function is shown in Fig. 2.(c).  

 Further, the expanded transfer function is generated. Next, the corresponding data flow graph (DFG/CDFG) is 
generated [9]. Subsequently, the DFG is fed as input to the HLS scheduling and allocation block. Finally, ML 
accelerator RTL datapath is generated post datapath synthesis.  

 Fig. (c) also depicts the datapath portion view of the CNN convolutional layer accelerator [9]. As evident in the 
datapath portion view, some input ports are free (unutilized) in the Mux-based interconnect design of the shown 
datapath (ports shown in orange).  

 It has been established in the literature [7], that these unused free ports can be exploited by the attacker during 
compromising a CAD HLS tool (to secretly insert the Trojan), without the knowledge of the ML accelerator designer 
(who is using the tool), causing different payloads (such as denial-of-service hardware Trojan (DoS HT), performance 
degradation hardware Trojan (PD-HT), data damage hardware Trojan (DD-HT)).  

Additionally, it has also been established in the literature [17], that an attacker can also exploit the scheduling phase of 
the HLS framework to insert pseudo/fake operations to launch a battery exhaustion attack.  

 The various Trojan payloads [2] can cause different types of adversarial effects in ML accelerators. 
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Fig. Scheduled data flow graph of MESA Horner 

Bezier without watermark  

Fig. Scheduled data flow graph of MESA Horner 

Bezier with embedded watermark  
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 PROPOSED MALEVOLENT HLS FRAMEWORK 

Fig. Malevolent High-Level Synthesis framework 
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  Fig.highlights the proposed malevolent high-level synthesis framework.  



Types of Trojan Attacks 
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Fig. (a) Trojan attacked ML Accelerator design, (b) Performance degradation Trojan 

attack, (c) Denial-of-service Trojan attack, and (d) Data Damage trojan attack  

 The four established Trojan attacks on ML 
accelerators are as follows:  

• Performance degradation hardware 
Trojan (PD-HT),  

• Data damage hardware Trojan (DD-HT),  

• Denial-of-service hardware Trojan (DoS-
HT), and  

• Battery exhaustion Trojan (BE-HT). 

 

      Note: Here, the orange-colored components 
indicate Trojan logic inserted by the attacker and 
orange free port input on top of 8x1 multiplexer 
indicates unutilized port exploited by the hacker 
for secret Trojan insertion.  



Types of Trojan Attacks (Contd.) 
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Fig.(e) Battery exhaustion Trojan attack in CNN convolutional layer accelerator 

 Fig. (e) demonstrates the integration of a BE-HT in the ML accelerator, designed to increase power consumption 
and speed up battery depletion. 

• The primary goal is to reuse the idle functional units (FUs) in the ML accelerator datapath. Multipliers, which 
have larger power dissipation, are chosen to increase the overall power consumption of the accelerator. Such 
modifications in the datapath have nominal area and power overhead.  

• This technique does not affect the final computational output while concurrently not enhancing the power 
overhead of the design substantially. 



Triggering of Backdoor Trojan 
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Hardware Trojans are stealthily inserted into systems that become active only when a specific rare condition 
(predetermined by the attacker) is met.  

 This activation has been managed through comparator logic that switches on the Trojan’s payload when the rare 
condition is satisfied.  

 These Trojans are extremely difficult to detect because they stay inactive (dormant and undetected until triggered 
by specific conditions) during regular system operations. During the insertion of the Trojan, an attacker programs a 
constant value ‘k’ into memory (electrically programmable) [7].  

As shown in Figures (b), (c), and (d), the first input (t) of the comparator is connected internally to the functional 
units (such as adders, multipliers, etc.) of remaining ML accelerator datapath, and the second input is connected to 
memory holding pre-loaded constant ‘k’. Once the system’s state (t) matches this constant (k), the Trojan becomes 
triggered, causing it to execute its intended malicious effects.  

 The above-explained trigger condition is the same for PD-HT, DD-HT, and DoS-HT. However, BE-HT has been 
designed in the literature to become triggered after a certain count value of the counter [17].  

 These Trojans not only compromise the security of ML designs but also erode the trust between the ML accelerator 
vendors and CAD software communities [5]. 

 

[5] D. Kachave and A. Sengupta, "Digital Processing Core Performance Degradation Due to Hardware Stress Attacks," IEEE Potentials, vol. 38, no. 2, pp. 39-45, March-April 2019. 
[7] A. Sengupta, A. Anshul, V. Chourasia and N. Kumar, "M-HLS: Malevolent High-Level Synthesis for Watermarked Hardware IPs," IEEE Embedded Systems Letters, 2024, doi: 10.1109/LES.2024.3416422. 
[17] C. Pilato, K. Basu, F. Regazzoni and R. Karri, "Black-Hat High-Level Synthesis: Myth or Reality?," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 4, pp. 913-926, 2019.  



Detection Techniques Employed for Backdoor 
Trojans in ML Accelerators 
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Fig. (a) Analysis of different detection techniques on Trojan infected ML accelerator designs (Note: ‘×’ indicates “not detectable”) 

[10] M. Abderehman, R. Gupta, R. R. Theegala and C. Karfa, "BLAST: Belling the Black-Hat High-Level Synthesis Tool," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 
11, pp. 3661-3672, 2022. 
[11] A. Sengupta, S. Bhadauria and S. P. Mohanty, "TL-HLS: Methodology for Low Cost Hardware Trojan Security Aware Scheduling With Optimal Loop Unrolling Factor During High Level Synthesis," IEEE 
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 36, no. 4, pp. 655-668, 2017. 
[12] Y. Huang, S. Bhunia and P. Mishra, "Scalable Test Generation for Trojan Detection Using Side Channel Analysis," IEEE Transactions on Information Forensics and Security, vol. 13, no. 11, pp. 2746-2760, 2018. 
[13] M. Ludwig, A. -C. Bette and B. Lippmann, "ViTaL: Verifying Trojan-Free Physical Layouts through Hardware Reverse Engineering," IEEE Physical Assurance and Inspection of Electronics, USA, 2021, pp. 1-8. 
[14] Y. Jin and Y. Makris, “Hardware trojan detection using path delay fingerprint,” IEEE International Workshop on HOST, 2008, pp. 51–57. 
[15] R. Yasaei, L. Chen, S. -Y. Yu and M. A. A. Faruque, "Hardware Trojan Detection using Graph Neural Networks," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022. 
[16] M. Rathor and A. Sengupta, "Revisiting Black-Hat HLS: A Lightweight Countermeasure to HLS-Aided Trojan Attack," IEEE Embedded Systems Letters, Volume: 16, Issue: 2, 2024, pp. 170-173. 



Detection Techniques Employed for Backdoor 
Trojans in ML Accelerators (Contd.)  
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Different types of Trojans, like PD-HT and DoS-HT, impacting performance and operational state, without altering 
functionality, makes them difficult to detect using equivalence checking [7], [10].  

On the other hand, DD-HT affects data output under rare condition triggering, making detection somehow possible 
through equivalence analysis [10].  

 Further, BE-HT has been successfully detected using C to RTL equivalence checking based on finite state machine 
datapath (FSMD) extraction. Further, these Trojans remain undetected through side-channel analysis [12] as they 
don’t leak significant parametric information (such as delay and power).  

 Techniques like path delay fingerprinting [14], attempt to differentiate normal designs from those compromised by 
Trojans, however, they become impractical for complex HLS-generated ML accelerator.  

Detection tools relying on Graph Neural Networks (GNN) [15] face limitations in accurately detecting Trojans 
within ML accelerators, because its performance/accuracy for complex ML accelerators is lower due to weaker 
learning behavior.  

Moreover, the detection technique [16] is only capable of handling BE-HT attacks, as PD-HT, DD-HT, and DoS-
HT do not induce Trojan payload using fake operation insertion.  

 Therefore, based on the published detection techniques for Trojans, C to RTL functional equivalence checking [10] 
has been the most effective technique as it is capable of detecting both BE-HT and DD-HT.  

[10] M. Abderehman, R. Gupta, R. R. Theegala and C. Karfa, "BLAST: Belling the Black-Hat High-Level Synthesis Tool," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 
vol. 41, no. 11, pp. 3661-3672, 2022. 



Analysis of ML Accelerators in terms of Design 
Area, Latency, and Resources 

19 

Fig. (b) Design area for LR-ML 

accelerator corresponding to different 

numbers of datasets (N) [6], (c) Design 

latency for LR-ML accelerator 

corresponding to different numbers of 

datasets (N) [6], (d) Trojan design area 

overhead (in terms of gate count) 

corresponding to convolutional layer 

CNN accelerator [7], (e) Trojan power 

overhead corresponding to convolutional 

layer CNN accelerator [7], (f) 

Comparison of number of pixels 

computed between [8] and [9] for 

different convolutional kernel filters (K), 

and (g) Resources required for 

convolutional layer datapath w.r.t. three 

different kernels  



Analysis of ML Accelerators in terms of Design 
Area, Latency, and Resources (Contd.)  
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 This section presents the analysis of different ML accelerator designs from the literature. Figures (b) and (c) depict 
the design area and latency for the LR-ML accelerator corresponding to different numbers of datasets (N), 
respectively [6].  

 The design area and latency are directly proportional to the number of datasets it handles. Subsequently, figures  
(d) and (e) show the design area (in terms of gate count) and power overhead corresponding to convolutional layer 
CNN accelerator after Trojan injection, respectively [7].  

 The Trojan-infected design, on average, incurs a minimal increase in the ~196 gate count value and ~1.6 μw power 
as compared to the baseline ML-accelerator design [7].  

Next, Fig. (f) shows the comparison of pixel computation between [8] and [9] for different convolutional kernel 
filters (K).  

Approach [9] surpasses [8] in terms of pixel computation value due to parallel pixel computation process owing to 
loop unrolled architecture. Finally, Fig. (g) highlights required resources for convolutional layer accelerator 
datapath w.r.t. three different kernels [9].  

[6] A. Sengupta, R. Chaurasia, M. Rathor: HLS-based swarm intelligence driven optimized hardware IP core for linear regression-based machine learning, IET Journal of Engineering, e12299 (2023). 
[7] A. Sengupta, A. Anshul, V. Chourasia and N. Kumar, "M-HLS: Malevolent High-Level Synthesis for Watermarked Hardware IPs," IEEE Embedded Systems Letters, 2024, doi: 10.1109/LES.2024.3416422. 
[8] S. Albawi, T. A. Mohammed and S. Al-Zawi, "Understanding of a convolutional neural network," International Conference on Engineering and Technology, Turkey, 2017, pp. 1-6. 
[9] A. Sengupta and R. Chaurasia, "Secured Convolutional Layer IP Core in Convolutional Neural Network Using Facial Biometric," IEEE Transactions on Consumer Electronics, vol.68, no. 3, pp. 291-306, 
2022. 



HLS Trojan Detection using Machine Learning 
Technique 

  A HLS Trojan detection technique has been proposed that is capable of detecting the following HLS Trojans: 

performance degradation hardware Trojan (PD-HT), denial-of-service hardware Trojan (DoS-HT), battery exhaustion 

hardware Trojan (BE-HT), downgrade attack hardware Trojan (DA-HT), and functional hardware Trojan (F-HT). 

  A feature extraction block has been proposed, which is responsible for the extraction of several crucial features from 

hardware intellectual property (IP) register transfer level (RTL) design (such as VHDL).  

  A HLS Trojan detection technique has been proposed using lightweight decision tree classifier-based machine 

learning (ML) model. 

 

 Threat model: Trojans in HLS-based hardware IP designs present significant security vulnerability, exploiting the 

automated and abstract nature of HLS tools. Compromised HLS flows/tools may embed malicious Trojans, degrading 

IP integrity during key HLS design phases, like scheduling, resource allocation, interconnect design, and 

datapath/controller synthesis phase, enabling national-level attacks on system-on-chip (SoC) development and 

undermining hardware security [1], [2]. 
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 Fig. Details of the proposed ML-based HLS-Trojan detection 

methodology  
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 Fig. Algorithm (Pseudocode) to perform feature extraction from the input RTL 

description (VHDL code) of hardware IP design 
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[7] A. Sengupta, A. Anshul, R. Chaurasia, Exploration of optimal functional Trojan-resistant hardware intellectual property (IP) core designs during high level synthesis, Elsevier Microprocessors and 
Microsystems, Vol. 103, 2023, 104973. 
[8] GitHub Repository, Available [Online]: https://github.com/ryderaadi/HLS-Trojan-Database--HLS-TD. 

Our feature extraction code is available publicly in [8].  

 The HLS-Trojan database consists of several instances corresponding to several benchmarks. The details of the 

benchmarks including their CDFGs and transfer functions along with created database are publicly available in 

[8]. 
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#0s= 148 

#1s= 202 

  

Corresponding Digital Template 

(Total size =350 bits) 

  

Secret biometric constraints for IC/IP 

  

Minutiae points=24 

  

Fingerprint image:101_8 

  

Corresponding Digital Template 

(Total size =526 bits) 

  

Corresponding Digital Template 

(Total size =555 bits) 

  

#0s= 224 

#1s= 302 

  
Secret biometric constraints for IC/IP 

  

#0s= 242 

#1s= 312 

  
Secret biometric constraints for IC/IP 

  

 

1011111010110111100010100010111…….

.01001111101111 

  

 

11011000101110111110110111110……….1

01001100111101 

  

 

 

10010110101101101001110101011010…..

110101111111110 

  

  

Fingerprint image (101_1) 

  

Minutiae points=22 

Secret biometric constraints for various fingerprint images  

  

Anirban Sengupta, Mahendra Rathor "Securing Hardware Accelerators for CE Systems using Biometric Fingerprinting", IEEE 

Transactions on Very Large Scale Integration Systems (TVLSI) , Accepted, 2020 
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Secured datapath of JPEG compression hardware accelerator implanted with biometric fingerprint  

Anirban Sengupta, Mahendra Rathor "Securing Hardware Accelerators for CE Systems using Biometric Fingerprinting", IEEE 

Transactions on Very Large Scale Integration Systems (TVLSI) , Accepted, 2020 
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Detecting Biometric Fingerprint in a hardware accelerator 

Anirban Sengupta, Mahendra Rathor "Securing Hardware Accelerators for CE Systems using Biometric Fingerprinting", IEEE 

Transactions on Very Large Scale Integration Systems (TVLSI) , Accepted, 2020 

  

Counterfeited design 

Ownership awarded to true IP owner  

Yes  

No  

Fig. 9. Proving true IP ownership using proposed detection approach 

  

Matching of hardware security constraints 

(number of 0s and 1s of digital template)? 

  

  

Matching of positions of constraints (0s 

and 1s of digital template)? 

  Yes (correct match with the 

owner’s template)  

False claim of ownership proved  

No match with the 

attacker’s template)   

Digital template of 

embedded biometric 

fingerprint 
Digital template of genuine IP 

vendor’s biometric fingerprint 

under-test 
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Securing reusable DSP IP core used in CE systems 

Palmprint based Hardware Security for IPP 

Anirban Sengupta, Rahul Chaurasia, Tarun Reddy "Contact-less Palmprint Biometric for Securing DSP Coprocessors used in CE 

systems", IEEE Transactions on Consumer Electronics (TCE) , Volume: 67, Issue: 3, August 2021, pp. 202-213 

 

Rahul Chaurasia, Aditya Anshul, Anirban Sengupta "Palmprint Biometric vs Encrypted Hash based Digital Signature for Securing DSP 

Cores Used in CE systems", IEEE Consumer Electronics (CEM) , Volume: 11, Issue: 5, September 2022, pp. 73-80 



Palmprint based Hardware Security for IPP 

32 

Anirban Sengupta, Rahul Chaurasia, Tarun Reddy "Contact-less Palmprint Biometric for Securing DSP Coprocessors used in CE 

systems", IEEE Transactions on Consumer Electronics (TCE) , Volume: 67, Issue: 3, August 2021, pp. 202-213 

 

Rahul Chaurasia, Aditya Anshul, Anirban Sengupta "Palmprint Biometric vs Encrypted Hash based Digital Signature for Securing DSP 

Cores Used in CE systems", IEEE Consumer Electronics (CEM) , Volume: 11, Issue: 5, September 2022, pp. 73-80 



• At first the palmprint biometric of 
the authentic vendor or designer is 
captured and subsequently image of 
the captured palmprint is subjected 
to a specific grid size/spacing.  

• This helps in generating the nodal 
points precisely. 

 

 Capturing palm image 

Palmprint based Hardware Security for IPP 

Anirban Sengupta, Rahul Chaurasia, Tarun Reddy "Contact-less Palmprint Biometric for Securing DSP Coprocessors used in CE systems", 

IEEE Transactions on Consumer Electronics (TCE) , Volume: 67, Issue: 3, August 2021, pp. 202-213 



• Finding Palmprint Feature Set and 
Deriving Nodal Points for Captured 
Palmprint Biometric. 

 

• Assigning Naming Convention and 
Deriving Palmprint Image with Selected 
Feature set. 
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 Generating image with chosen palm features 

and nodal points 

Palmprint based Hardware Security for IPP 

Anirban Sengupta, Rahul Chaurasia, Tarun Reddy "Contact-less Palmprint Biometric for Securing DSP Coprocessors used in CE systems", 

IEEE Transactions on Consumer Electronics (TCE) , Volume: 67, Issue: 3, August 2021, pp. 202-213 



35 

Palmprint based Hardware Security for IPP 

Feature # Palmprint feature name 
Naming conventions of 

nodal points 
Co-ordinates (x1,y1)- (x2,y2) 

F1 
Distance between start of life line and end 

of life line (DL) 
(P16) – (P24) (230, 390)- (285, 650) 

F2 
Distance between datum points of head line 

and life line (DHL) 
(P23) – (P24) (405, 520) -(285, 650) 

F3 Width of the palm (WP) (P16) – (P20) (230, 390)- (495, 490) 

F4 Length of palm (LP) (P13) – (P25) (350, 325)- (350, 650) 

F5 
Distance between first consecutive 

intersection points of forefinger (DFF) 
(P2) – (P5) (300, 30)- (285, 130) 

F6 
Distance between second consecutive 

intersection points of forefinger (DSF) 
(P5) – (P9) (285, 130)- (285, 230) 

F7 
Distance between third consecutive 

intersection points of forefinger (DTF) 
(P9) – (P12) (285, 230)- (285, 320) 

F8 
Distance between first consecutive 

intersection points of middle finger (DFM) 
(P1) – (P4) 

(350, 5)- (350, 110) 

  

F9 
Distance between second consecutive 

intersection points of middle finger (DSM) 
(P4) – (P8) (350, 110)- (350, 220) 

F10 
Distance between third consecutive 

intersection points of middle finger (DTM) 
(P8) – (P13) (350, 220)- (350, 325) 

F11 
Distance between first consecutive 

intersection points of ring finger (DFR) 
(P3) – (P6) 

(415, 50)- (415, 160) 

  

F12 
Distance between second consecutive 

intersection points of ring finger (DSR) 
(P6) – (P10) (415, 160)- (415, 245) 

F13 
Distance between third consecutive 

intersection points of ring finger (DTR) 
(P10) – (P15) (415, 245)- (415, 355) 

F14 
Distance between first consecutive 

intersection points of little finger (DFL) 
(P7) – (P11) (495, 170)- (495, 265) 

F15 
Distance between second consecutive 

intersection points of little finger (DSL) 
(P11) – (P14) (495, 265)- (495, 335) 

F16 
Distance between third consecutive 

intersection points of little finger (DTL) 
(P14) – (P17) (495, 335)- (495, 405) 

F17 
Distance between first consecutive 

intersection points of thumb finger (DFT) 
(P18) – (P21) (70, 470)- (120, 495) 

F18 
Distance between second consecutive 

intersection points of thumb finger (DST) 
(P21) – (P22) (120, 495)- (165, 520) 

F19 
Distance between starburst point and third 

intersection point of thumb (DTT) 
(P19) – (P22) (180, 480) -(165, 520) 

SELECTED 19 PALMPRINT FEATURES, CORRESPONDING NODAL POINTS AND CO-ORDINATES 



 Finding Feature Dimensions and Deriving Palmprint 
Signature Based on the Selected Feature Order 

• For example, a palmprint signature for the selected order of 
palmprint features (“DL╪ DHL --- ╪ DTT”. Where, ‘╪’ 
represents the concatenation operator) after concatenation is 
as follows: 

• Palmprint Signature: 

“100001001.1110110000.111010001111010111.---.11111” 
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Note: Size of the palmprint signature varies based on the number of chosen palm features by the vendor for 

signature generation (depending on the required security strength corresponding to target application). 

Palmprint based Hardware Security for IPP 



Deriving the Covert Security Constraints and 
Implanting into Target IP core Design 

37 

• Post obtaining the digital template of palmprint 
signature, corresponding hardware security constraints 
are generated based on the encoding rules. 

• The encoding rules for the signature bits are as follows: 

    The bit ‘1’ embeds an edge between node pair (odd-
odd), bit ‘0’ embeds an edge between node pair (even-
even). Moreover, the binary bit ‘.’ embeds an edge 
between node pair (0, integer) into the CIG of target DSP 
design. 

• For example, for a sample design having 31 storage 
variables (T0 to T30) executing through 8 registers (R1 
to R8), the generated security constraints corresponding 
to the zeros are: <T0, T2>, <T0, T4>---<T16, T28>, the 
security constraints corresponding to ones are: <T1, 
T3>, -----<T27, T29> and corresponding to the binary 
points are: <T0, T1>, <T0, T3>, -- -, <T0, T11>. 

Palmprint based Hardware Security for IPP 



RESULTS AND DISCUSSION 

• The proposed palmprint biometric approach is analyzed in terms of security and design overhead. 

 

Security Analysis: 

• The security of the proposed approach is analyzed in terms of probability of coincidence (Pc) and 
temper tolerance (TT) ability.  

• The Pc metric is formulated as follows: 

                                             Pc = 1 −
1

𝜏

𝑆
                                  (1) 

• The TT metric is formulated as follows:  

                                              TT = 𝑃𝑄                                          (2) 
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Conclusion 

 This talk presents Trojan attacks on ML accelerators and its detection techniques.  

 The talk also infers that tackling the problem of security vulnerability in ML accelerators is a wide-open research area 
for the cybersecurity community.  

 The talk also discusses potential countermeasures for HLS Trojan detection. 
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Thank You !!! 


